A persistent web application for distribution of
weather information in Scheme

Mario Latendresse

Northrop Grumman
Fleet Numerical Oceanography and Meteorology Center (FNMOC)
Navy Research Laboratory
Monterey, CA

Abstract. For several years, the Navy has used Scheme to build a web
application for the distribution of real-time weather information for mis-
sion plannings. This application, called Metcast, is composed of meteo-
rological bulletin decoders and a web server accessible around the world.
The decoders populate several databases of real-time weather observa-
tion reports, forecasts, satellite images and gridded data produced by
weather models. The requests to Metcast are formulated in a simple
language, its syntax being s-expressions. The responses are returned as
either binary data or XML.

Recently the Metcast server was modified to run under the fastCGI
module of Apache. This module maintains a pool of persistent web ap-
plication instances, each capable of answering multiple requests. This
persistency increases throughput by avoiding multiple process creations,
startup delay and reconnection to database servers.

A new tool is being used to generate lexical parsers in Scheme. It is
based on a cascade of lexers, described by tagged regular expressions
(TREs) written as s-expressions. In Metcast, these lexical parsers are
used to generate meteorological decoders. We advocate TREs, instead of
Perl style regular expressions, as they can do complex lexical parsings by
generating parse trees which Lisp like languages can easily manipulate.
We present the latest Metcast architecture and the technical details of
the integration of Scheme with other fundamental Unix tools. We ar-
gue that the Metcast implementation, using Scheme, is highly portable
and could not have been accepted by the Navy if it were not for its full
integration with common Unix tools. We also pinpoint some basic func-
tionalities unavailable in the Scheme standard (R5RS) but for which our
web application could not function properly and efficiently.

1 Introduction

The Fleet Numerical Meteorology and Oceanography Center (FNMOC), in Mon-
terey, has the mandate to distribute real-time weather information for the Navy
mission plannings. The Metcast system, originally created by Oleg Kiselyov [§],
has been successfully used for several years to distribute this information as a
web application. It is composed of a set of decoders populating databases, and

a web application — the Metcast server — answering requests formulated as s-
expressions. The responses are dynamically generated based on database tables.
The Metcast server currently answers over twenty thousands HTTP requests a
day. The response sizes range from a few bytes to tens of millions of bytes, the
average being around 500 KB.

In its original design, the Metcast server uses CGI, but each request spawns
five processes, reaching the processing power limit of a Sun E10K!.

Metcast has recently been adapted to run under the fastCGI [1] module of
Apache in order to reduce this load. This new implementation dramatically re-
duces the number of spawned processes. Moreover, it will allow a distributed
architecture on clusters of computers as new hardware will replace the multipro-
cessor computer.

A proxy, written in C, uses the API provided by the fastCGI development
kit [1]. In essence, it is the bridge between the fastCGI module and the Scheme
code. It transforms an HTTP request into a syntax easily readable by the Scheme
code.

Several proxy instances may be running in parallel. They are spawned and
killed by the fastCGI module. The behavior of the spawning algorithm is con-
figurable by a user defined directive in file httpd.conf.

A spawned proxy initiates a connection on a Unix port for which the Unix
superdaemon inetd has been configured to monitor. Such a connection initiates,
by inetd, a new Metcast server instance which communicates with the proxy
through a TCP connection. The Metcast instance can be located on a different
computer. All HTTP requests go through the fastCGI module, a proxy instance
and the corresponding Metcast server. All responses go through the reverse path.

The databases are populated by a set of decoders permanently running.
WMO (World Meteorological Organisation) bulletins are bundled into large files
dropped into a specific directory. They are pickup by the decoders, decoded
and ingested into a database. Similarly, other data, like satellite imageries and
gridded data produced by forecasting models are ingested into databases.

Section 2 presents the MBL request language for Metcast. In section 3 we
present the technical details to adapt some Scheme code to run under fastCGI as
a dynamic web application. In section 4 we discuss the necessary exception han-
dling features a Scheme implementation should provide to implement a resilient
web application. The database connection technique used is presented in section
5. Section 6 presents a new tool to construct complex lexers using s-expressions
as a descriptive language. We use these to build WMO bulletin decoders. In
section 7 we compare our approach to some similar works. Finally, we conclude
in section 8.

! The E10K is a ten processors Sun computer also used to run all the decoders and
the database servers.

(examplel
(bounding-box 50 -77 42 -20)
(st_constraint (st_country_code "CN"))
(products (METAR TAF)))

Fig.1l. An MBL request for TAF and METAR products.

2 The Metcast request language

As most web applications, two kinds of requests can be made to Metcast: post
and get. A get request, for which the URL itself specifies the parameters, provides
a simple mechanism to obtain the catalog of available weather products. A post
request allows a message content. We use it to pass an s-expression called an
MBL expression. It is a list formed by global parameters and clauses identifying
the requested weather products.

Fig. 1 presents a simple MBL request: examplel is the name of the request,
the region is specified by the bounding-box with latitudes and longitudes, a
global constraint specifying a country, and the product list: METAR and TAF.
The result of this request is a multi-part HT'TP response formed by two OMF
(XML instance) documents.

Since an MBL expression is a native data structure for Scheme, it can be
read by the primitive read. This primitive is actually too simple as requests
could be badly formed. This could hang the reader or raise a run-time error.
For example, the s-expression ‘(a (products TAF)’ lacks a closing parenthesis
causing read to wait forever on the TCP stream. Assuming that run-time errors
can be caught, a more robust solution is to read the content of a post request
as a string, given the content length of the post request, and use this string as
a port for read. This is the adopted technique in Metcast.

This is an important reason to be able to catch any Scheme internal excep-
tions, a non-standard feature in many Scheme implementations.

3 Adapting a Scheme application to run under fastCGI

Web applications using CGI suffer from starting time due to process creations,
code loading and database connections. The fastCGI module under the Apache
server tries to diminish this shortcoming by providing dynamic persistent web
applications. The module maintains a pool of running applications capable of
answering several requests. It spawns and kill these processes according to the
number of requests and responses delay.

Running a dynamic web application under the fastCGI module entails that
all input/output must follow a specific protocol. Technically, a dynamic fastCGI
application must communicate through the fastCGI API provided by the devel-
opment kit [1]. To shield the Scheme code from any direct interaction with this
API, and still use standard input/output, we wrote a proxy in C. The proxy uses

this API and communicates with the Scheme code through a TCP connection,
although the Scheme code is relatively unaware of this. We use the superdaemon
inetd which listens to a port and spawns a new Metcast server instance when
a proxy initiates a communication. The Metcast server does all input/output
using the standard primitives since inetd takes care of the TCP connection.

The greatest complication is that the end of file indicator can no longer be
used. So, all outputs are translated into strings and sent in chunks to the proxy,
with explicit lengths. An explicit zero byte chunk indicates the end of file. The
input is simpler, as we only have to read the body content of a post request.

Metcast relies on two programs to retrieve images and gridded data from a
database. The resulting responses for this type of data can be large, often greater
than 5 MB. Since their output already uses the chunk encoding, we simply relay
this data, using a port-copy, to the proxy, without going through the Scheme
code. It greatly increases performance.

The Metcast system currently uses Gambit [5] (version 3.0), a Scheme im-
plementation built by Marc Feeley. We had to write several foreign functions (in
C) to implement low level Posix system calls. In particular, some undocumented
features of Gambit had to be used to catch run-time errors and gracefully end
the Metcast server.

We have also considered other implementations, in particular Bigloo devel-
oped by Manuel Serrano [10]. Some of its particularities would reduce program-
ming web applications: internal exceptions can be caught, and some of the Posix
system calls are already implemented.

4 Metcast resiliency

It is important that the Metcast system be resilient and gracefully report pro-
gramming errors back to the proxy. Scheme is a dynamically typed language and
several programming errors are reported at run-time. We often add new features
and modules, and debugging run-time errors can be difficult if the Scheme imple-
mentation ends without reporting back any error messages. This is what would
happen if we let it exit and write to standard output any error messages, since
the proxy expect only chunk encoded output.

For the Scheme implementations considered, a run-time error generates an
internal exception signal. For the server it is essential that these exceptions be
caught such that an ‘HTTP 500’ error be properly reported back to the client
through the proxy. Moreover, the Metcast server may find itself in a state where
it can no longer accept any requests: it must then exit and signal the proxy to
shutdown. Otherwise, the proxy would accept a new request and try to serve it,
although the Metcast instance would have exited for good.

For the decoders, the general strategy is to run the main decoder module
through a shell script. It should run indefinitely. If it exits, an run-time error
occured. The shell script restarts it, and if this rapidly happens two times, the
current file of WMO bulletins is moved away into an exception directory. In this
manner, if the error is due to a new decoder module, all the files containing

the corresponding bulletins are skipped, yet preserved for latter decoding. Obvi-
ously, a corrective action should soon be done, but all other bulletins are usually
processed keeping the whole Metcast system alive.

5 The database connection

We use an Informix database server. The communication between the Scheme
code and this database server is done through dbaccess. Actually, this tool is
mainly designed for interactive communication with the server. Yet, it can easily
be used through a bidirectional named pipe. An MBL request is translated into a
SQL request, which is transfered to the server through dbaccess. The response is
read through the pipe and formatted as a XML document for text or transfered
as is for binary dataZ.

To increase the robustness of the Metcast server, all database server commu-
nications are wrapped by a timer mechanism that raises a signal after a specified
amount of time.

The simplicity of the database connection requires only two special features
from a Scheme implementation: the creation of a bidirectional named pipe and
a timer mechanism. Despite this simplicity, it is robust, portable and efficient.

6 RegReg: Generation of complex lexical parsers

The Metcast server emits weather observations and forecasts as XML documents.
Since these documents have a well defined structure, with tags, they can be
easily manipulated using languages and tools such as SLT, XPATH, etc. This
is an essential feature of Metcast: it converts complex untagged WMO bulletins
into well tagged XML documents.

The ability to emit such XML comes from the well structured database tables
which have been populated by WMO meteorological bulletins. These bulletins
have a complex and terse lexical format defined in the 1950s by WMO. In many
cases they are human generated. It takes a trained meteorologist to reliably
encode and decode them.

To give a feeling of the lexical nature of the WMO bulletins, Figures 2 and 3
present an AIRMET and TAF (Terminal Aerodrome Forecast) bulletins respec-
tively.

The first line of the AIRMET bulletin gives the general area ‘BOS’, ‘Z’ being
the type, a ‘ZULU’ report, ‘201014’ being the issue-time of the report in the
format day, hour and minute. The second line provides the update number, the
specific reason for this report, ‘ICE’, and the time this report becomes obsolete.
On the first line of the second paragraph the affected regions are specified as
‘PA OH WV ... WTRS’. The second line is more specific with a series of relative
airport locations specifying a closed polygon, each location being an airport
name and an optional distance and direction; for example, ‘60NW CYN’ means

% Satellite images and gridded data are in binary format; all WMO bulletins are text.

BOSZ WA 201014
ATRMET ZULU UPDT 4 FOR ICE AND FRZLVL VALID UNTIL 201200

AIRMET ICE...PA OH WV VA MD DC DE NJ AND CSTL WTRS

FROM AIR TO 60NW CYN TO 30NEE ORF TO HMV TO HNN TO AIR

LGT OCNL MOD RIME OR MXD ICGICIP BTN 140 AND FL250. CONDS CONTG
BYD 02Z SPRDG EWD THRU 08Z.

OTLK VALID 0200-0800Z...ICE NJ DE MD VA CSTL WTRS
S LN CYN-75S ACK AND N LN ORF-150ESE SBY LGT OCNL MOD RIME OR MXD
ICGICIP ABV 140 TO FL250. CONDS CONTG THRU 08Z.

FRZLVL...100 NR AND N LN YQB-PQI
120 NR LN YOW-CON-140SE BGR
140 NR LN ASP-ERI-APE-BKW-SIE-140E ACK
140-145 RMNDR AREA

Fig.2. An AIRMET bulletin.

TAF KCTB 072330Z 080024 26019G26KT P6SM SCT100 BKN150

FM0200 29014KT P6SM SC T100 BKN150 FM1000 35013KT P6SM SCTO050
BKN100 PROB30 1216 3SM -SN BR BKNO40 FM1600 34017G26KT P6SM
SCTO70 BKN120=

Fig.3. A TAF bulletin.

60 miles North West of CYN. The third line described in more detail the icing
observation with a specification of a height range ‘BTN 140 AND FL250’; this
last term being in fact 25000 feet.

The TAF bulletin shows even more examples of tokens from which several
parts must be extracted to find out its meaning. The token ‘34017G26K'T’ spec-
ifies wind of 17 knots, 340 degrees from the North, gusting at 26 knots; the
gusting part is optional as in ‘29014KT".

There is a decoder for each type of WMO bulletins: TAF, METAR, SYNOPS,
SIGMETS, AIRMETS, etc. Currently we have twelve decoders but we still have
many to write and these current ones must be maintained to increase their
reliability3. All decoders were written in Scheme.

Due to the complexity of building and maintaining them it was decided to
write a general tool to emit lexical parsers, or lexers, based on a description of
the WMO bulletins.

There are tools capable of generating lexers in Scheme from regular expres-
sions (e.g. SILex [3]). These tools are not adapted for stand-alone syntax analysis,

3 It is often discovered that meteorologists do not input bulletins exactly as officially
specified. Once these discrepencies are discovered we modify the decoders.

a) ((7 (=4 "[0-3]1[0-91")) (= h "[0-2]1[0-9]1") (= m "[0-5][0-91") (7 "Z"))

b) ((x "0") (= x ("[1-9]" (* "[0-9]1"))))

Fig. 4. Two tagged regular expressions (TREs) with bindings.

but rather for compiler construction. They work mainly as recognizer, a major
drawback to be used as parser. In other words, they do not return parts of the
recognized strings, simply the whole result.

Regular expressions can describe WMO messages, but they lack the possibil-
ity of easily extracting parts of the recognized strings. As discussed, for WMO
bulletins, tokens must often be broken in several parts to extract their meaning.

All known lexical generators, libraries and languages based on regular ex-
pressions (e.g. Perl) have poor capabilities for extracting parts of the recognized
strings. It is possible to partially extract some parts, but it is not for many practi-
cal situations. For example, in Perl, the regular expression /([0-9]1)G([0-9])/
creates two bindings, for the parentheses subexpressions, namely $1 and $2.
These are bound to the substrings matching the first and second subexpres-
sion [0-9] respectively. For the string 4G7 it would binds 4 to $1 and 7 to $2.
But the expression /(([0-9]1)G([0-9]))+/ is problematic since $1 is not nec-
essarily bound to the first matching of [0-9], it could be bound to the second
or the entire matching of ([0-9]1)G([0-9]). The mechanism of subexpression
matching was not designed for complex cases, but only for simple non-nested
subexpressions.

Longterm efficiency should also be a concern: the generated code should use
an efficient technique. Perl regular expression implementation is based on non-
deterministic automaton, that is it uses backtracking. Our tool is based on a
deterministic technique, requiring no backtracking and therefore avoiding the
potential exponential time execution.

Moreover, instead of using two separate tools, as for example Lex and Yacc,
the lexer and parser are described by regular expressions; actually tagged regular
expressions.

Fig. 4a shows a tagged regular expression (TRE) representing a timestamp.
The operator = binds the tags d, h and m with the corresponding parts of
the token. The operator ? specifies an optional part; an expression as "[0-91"
represents the set of characters ‘0’ to ‘9’. Assuming that the string to parse is
"311230", the resulting parse tree would be ((d "31") (h "12") (m "30") ());
if ‘31’ were missing, the result would be (OO (h "12") (m "30") ()). In gen-
eral, the value of a tag is the subtree associated with it in the parse tree. The
resulting tree is easy to manipulate as one general function tag->value returns
the value of a given tag in a parse tree; if the tag does not exist, it returns #f
(false). Fig. 4b is a TRE for positive integers where £ would be bound to the
significant part.

(regreg
(rules 1
(wind ((= speed (+ "[0-91")) (7 "G" (= gust (+ "[0-9]"))) "KT")
(time ((+ "[0-91") "2"))

(area "[A-Z] [A-Z] [A-Z]")
(outlook (or "ICG" "TURB" "MTN OBSC" "LLWS"))
(dir ((= degree (+ "[0-91")) (or "E" "N" "W" "S")))
(b (+ " ||))
(end "=")))
(rules 2

(msgh (time (+ b area b wind b dir) b end))
(msgB ((= period (time b time)) b area b outlook b end)))

(rules 3
(bulletin (+ (or msgA msgB)) process-bulletin)))

Fig. 5. A small decoder specification using TREs.

Asin Lex, the set of valid tokens is described by a series of TREs. The parser
is also described by TREs, actually a cascading series of TREs grouped in rules
sections.

A TREs such as (* (= x "[A-Z]") "[0-9]1"), where ‘¥’ is the kleene clo-
sure, may create several bindings for the same tag; parsing the string "A1B2C3"
would result into the parse tree ((x "A") "1" (x "A") "2" (x "A") "3").
This presents no difficulty as the semantic analysis expect such multiple bind-
ings and should act accordingly. One general function tag->all-values — that
returns the list of all values, given a tag, by inorder traversal of the parse tree
— suffices for extracting the multiple bindings.

Parsing ambiguities can arise in some specifications. For example, the TRE
((? (= x "[0-91M) (? (= y "[0-91M))) is ambiguous if the string "3" is
parsed since ‘3’ can be validly bound to z or y.

Fig. 5 describes a small parser using three rules sections. The first section
describes the basic tokens based on characters. In compiler term, this is the lexer.
The second section is based on the first, the lexer, while the third is based on the
second. These two sections form the parser. The same TRE semantic apply to
all sections: TREs are matched using the longest match, unless the option short
is specified; when two TRE matches, the TRE occuring sooner in a section has
precedence. In rules sections 2 and 3, the basic literals are no longer characters
but tokens although the syntax is described by TREs. The advantage over a
full LALR(1) grammar is conciness: no basic operations have to be specified
to build a tagged parse tree. The tree itself always have the same basic form,
making simple their manipulation.

In rules section 3, when a bulletin has been recognized, process-bulletinis
called with the constructed parse tree as argument. Each rule can be associated

with a function. An error keyword can be specified in each section to name a
function to call when the parser cannot match the input.

A tool written in Scheme — called RegReg — generates a lexer table based on a
cascade of rules sections. The table is combined with a driver to form a complete
lexer /parser. The implementation technique used by RegReg is an extention of
the technique presented by Dubé [4]. It essentially associate list operations with
NFA arcs. The transformation from NFA to DFA creates chains of operations.
We have modified the method by adding an operation to bind tags to subtrees.

The fact that Scheme can natively read and manipulate complex data struc-
tures, similar to XML, is important to promote it as a general language to build
specialized tools. We believe that Scheme strong point is its minimalist general
and powerful core upon which more specialized tools and languages can be built
in a short period of time. These have been important facts to promote Scheme
at FNMOC.

7 Other approaches for Scheme web applications

PLT Scheme (aka DrScheme)[6] libraries include a web server [7] and a framework
to program web applications. It is an elegant solution but the main drawback
of this approach is the necessity to adopt an all out Scheme solution. It is not
aimed at reusing well established servers, like Apache. It is also not well adapted
for clusters as all servlets are running in the same interpreter instance.

Tlia Perminov wrote a PLT extension to run Scheme code under fastCGI
of Apache [9]. This approach does not use the dynamic load balancing facility
of fastCGI; and this cannot be used to scale the web application to a cluster
of computers. Furthermore, the input/output uses TCP connection explicitly,
requiring new primitives to open, close, read and write; whereas our implemen-
tation directly uses the standard input/output leaving this work to the Unix
superdaemon inetd.

The mod_pipe module of Anikin and Lisovsky [2] ressembles our approach as
it does not depend on any Scheme implementation; but it is aimed at dynamically
transforming web page contents in a similar manner to the PHP language.

8 Conclusion and future work

Web applications written in Scheme can be well integrated with existing web
servers, even with the latest facilities as fast CGI. Our approach relies on common
tools and basic functionalities of an operating systems (e.g. superdaemon inetd,
named pipes, etc.).

Integration with well known web servers and their added modules is a very
important feature for industrial acceptance. An all out Lisp approach would not
have be accepted by the U.S. Navy.

The Srfi (Scheme Request For Implementation) process has introduced new
helpful libraries for web applications, but more needs to be done. In particular,

Posix like system calls are a necessity to better interact with the operating
system. Probably, a Scheme srfi should be proposed to deal with web applications
needs.

Several Scheme implementations could have been used to meet our require-
ments, but, to that end, some are better than others. The ideal implementation
would have Posix system calls, simple internal exception handlings, and timer
mechanism.

We believe that Perl like regular expressions are an ill adapted approach for
Lisp like languages. We believe it is more appropriate to generate tagged parse
trees, from tagged regular expressions as in RegReg, which are easily manipulable
as s-expressions.

Finally, s-expressions are not industrially well known, but the XML accep-
tance by non-academic institutions makes s-expressions and the family of Lisp
languages more acceptable.

9 Acknowledgments

Many thanks to: Oleg Kiselyov for many technical tips in adapting Metcast
under fastCGI; Marc Feeley for Gambit; Manuel Serrano for some discussion on
his Bigloo system; and Danny Dubé for his prompt replies about his paper.

References

1. fastcgi home page, [August 2002]. http://www.fastcgi.com/.

2. Victor Anikin and Kirill Lisovsky. mode_pipe, [August 2002].
http://www196.pair.com/lisovsky /mod_pipe/.

3. Danny Dubé. SILex, [August 2002]. http://www.iro.umontreal.ca/dube/.

4. Danny Dubé and Marc Feeley. Efficiently building a parse tree from a regular
expression. Acta Informatica, 37(2):121-144, 2000.

5. Marc Feeley. Gambit Scheme System, [August 2002].
http://www.iro.umontreal.ca/ gambit/.

6. Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Kristna-
murthi. The drscheme project: An overview. SIGPLAN Notices, 33(6):17-23,
1998.

7. Paul Graunke, Shriram Krishnamurthi, Steve Van Der Hoeven, and Matthias
Felleisen. Programming the Web with high-level programming languages. Lec-
ture Notes in Computer Science, 2028:122-135, 2001.

8. O. Kiselyov. Implementing Metcast in Scheme. In Matthias Felleisen, editor,
Proceedings of the Workshop on Scheme and Functional Programming, volume
Rice COMP TR00-368, pages 23-25, Montreal (Canada), September 2000.

9. Ilia Perminov. Plt scheme libraries and extensions, [August 2002].
http://www.cs.utah.edu/plt/develop/.
10. Manuel Serrano. Bigloo Home Page, [August 2002]. http://www-

sop.inria.fr/mimosa/fp/Bigloo/.

10

